
GPT-5暴写「屎山代码」!14个Prompt,看穿GPT-1到GPT-5七年智商进化史
GPT-5暴写「屎山代码」!14个Prompt,看穿GPT-1到GPT-5七年智商进化史GPT-5发布半月,却被连连吐槽。如今,一张基准与GPT-4对比基准测试图,证明了Scaling Law没有撞墙。七年间,从GPT-1到GPT-5十四个花式Prompt对决,实力差一目了然。
GPT-5发布半月,却被连连吐槽。如今,一张基准与GPT-4对比基准测试图,证明了Scaling Law没有撞墙。七年间,从GPT-1到GPT-5十四个花式Prompt对决,实力差一目了然。
蛋白质模型的GPT时刻来了! 清华大学智能产业研究院(AIR)周浩副教授课题组联合上海人工智能实验室发布了AMix-1: 首次以Scaling Law、Emergent Ability、In-Context Learning和Test-time Scaling的系统化方法论来构建蛋白质基座模型。
OpenAI前研究员、Meta「AI梦之队员」毕书超在哥大指出:AGI就在眼前,突破需高质数据、好奇驱动探索与高效算法;Scaling Law依旧有效,规模决定智能,终身学习才是重点。
GPT-5更近了!今天,神秘模型Horizon Alpha火遍全网,编码首测性能逆天,各种三方基准实测相继放出。就在发布前夕,OpenAI核心大脑专访坦言模型还有瓶颈,但坚信Scaling Law没有尽头。
Anthropic 联合创始人 Jared Kaplan 是一名理论物理学家,研究兴趣广泛,涉及有效场论、粒子物理、宇宙学、散射振幅以及共形场论等。过去几年,他还与物理学家、计算机科学家们合作开展机器学习研究,包括神经模型以及 GPT-3 语言模型的 Scaling Law。
如何让机器人从看懂世界,到理解意图,再到做出动作,是具身智能领域当下最受关注的技术重点。 但真机数据的匮乏,正在使对应的视觉-语言-动作(VLA)模型面临发展瓶颈。
最近,一款全新的奖励模型「POLAR」横空出世。它开创性地采用了对比学习范式,通过衡量模型回复与参考答案的「距离」来给出精细分数。不仅摆脱了对海量人工标注的依赖,更展现出强大的Scaling潜力,让小模型也能超越规模大数十倍的对手。
大语言模型(LLM)在标准编程基准测试(如 HumanEval,Livecodebench)上已经接近 “毕业”,但这是否意味着它们已经掌握了人类顶尖水平的复杂推理和编程能力?
2017 年,一篇《Attention Is All You Need》论文成为 AI 发展的一个重要分水岭,其中提出的 Transformer 依然是现今主流语言模型的基础范式。尤其是在基于 Transformer 的语言模型的 Scaling Law 得到实验验证后,AI 领域的发展更是进入了快车道。
最近,关于大模型推理的测试时间扩展(Test time scaling law )的探索不断涌现出新的范式,包括① 结构化搜索结(如 MCTS),② 过程奖励模型(Process Reward Model )+ PPO,③ 可验证奖励 (Verifiable Reward)+ GRPO(DeepSeek R1)。